
Cascading Exceptions
by Andrew McLellan

Anyone who has tried to build a
large Delphi application using

exception handling will have faced
the problem of where to trap ex-
ceptions and how to report them to
the user. Delphi’s VCL is built
around the premise that anything
may raise an exception and your
code must be able to handle report-
ing in a meaningful way as well as
cleaning up any resource alloca-
tions made. This is particularly
true when dealing with the BDE and
especially so when upsizing to a
Client/Server environment where
the error messages returned by
remote services can be less than
useful to the user (Figure 1) but the
bland message that the user needs
to see is of little use to the devel-
oper or technical support who
need to understand the error.

In an ideal environment, an
exception needs to be handled so
that:
➣ The user is told that there is a

problem in terms that they will
understand.

➣ Sufficient information is given
for technical support to under-
stand the problem without
sending along a programmer
with a notebook PC.

➣ The user is given some idea of
what they must do to correct
the problem.

One way of showing the user all the
available error information is to

append it to the error string, which
can be arbitrarily large (Listing 1).

But this is unsatisfactory as, in
practice, there is a limit as to how
complex you will want the error
message to be. Some of the BDE
errors returned by Client/Server
applications are daunting and it is
difficult to add extra information
that assists technical support with-
out baffling the user.

The simplest way to show all this
error information is to use a
stringlist in place of an ever ex-
panding string and to be able to let
the user view the error messages in
ever increasing detail. Users of

Paradox (and Database Desktop)
will recognize the results.

The Cascading
Exception System
The intent of the cascading excep-
tion handler discussed in this arti-
cle is to provide structured error
information to the user without
hiding the underlying error from
the developer. A simple case,
where a programming error has
left the table name unset, pro-
duces the dialog shown in Figure 2
and pressing the Previous button
gives the next error, as shown in
Figure 3. The level of complexity of

➤ Figure 1

Procedure OpenCustomerTable;
Begin
 Try
 CustomerTable.Active := True;
 Except
 On E : Exception Do
 Raise Exception.Create(’Error opening Customer table : ’ + E.Message);
 End;
End;

➤ Listing 1

➤ Below: Left: Figure 2
Right: Figure 3

September 1996 The Delphi Magazine 19

this error nesting is arbitrary and
will depend on the application.

Three Layers Or More
For any non-trivial Delphi applica-
tion, there are three or more layers
of code in which exceptions can be
raised and handled. At the top,
there is the user interface layer in
which error handling is simple,
comprising a dialog with the user.
At the bottom, there are the excep-
tions reported by the BDE and VCL.
But the middle layer (your applica-
tion code) is the one that needs
most thought in design.

Consider the case where you
have a table on a remote server and
that table has primary and secon-
dary indexes. For your application
to successfully open the table, sup-
pose that the table must exist,
must have at least one record in it
and that both indexes must be
valid. This functionality needs to
be packaged into a single method
that does all four validity tests and
presents the user with valid
information should any test fail,
while not discarding any error
information that is useful to the
support/development staff.

One Exception Handler
Additionally, we need to future-
proof our code. If, when designing
the code to run interactively, we
trap the exception raised by the
VCL failing to open the table and
present a dialog box to the user,
then we cannot convert the appli-
cation to run as a background
thread or as a batch application
without substantial re-coding.

If all the exceptions go to a single,
application-wide, exception han-
dler, then converting the applica-
tion to run as a batch operation is
simply a matter of changing one
routine to write the errors to a log
file instead of showing them to the
user. The solution is the cascading
exception handler.

Exceptions Are Objects
Delphi is, of course, an object ori-
ented language and exceptions are
objects. We can build on the
existing exception objects to add
functionality of our own, as with
any other object.

The Exception class is defined in
SysUtils and has eight construc-
tors for raising an exception in
different ways, with or without a
call to Format, with the option to
look for the error message in a re-
source file and with optional help.
In this example, we’ll ignore all the
constructors other than the simple
Create(Msg : String).

An exception is raised by Delphi
creating an exception instance,
before trawling up through the
Try..Finally blocks until an excep-
tion handler is reached. This can
either be an Except..End block or
the application’s handler, which
can be either the application’s
default handler or one supplied by
you.

In an Except..End block we have
three choices of what to do with
the exception: we can handle it,
re-raise it or raise a new exception.
It is this last method that we will
use: exceptions raised in low-level
routines will be trapped and
re-raised as our exception class,
EError, which behaves exactly as a
‘normal’ exception (which is
reasonable, as it is a normal

exception) but which carries a
larger payload.

EError
There are four steps to adding the
EError class to your application:
➣ Writing the new EError class.
➣ Writing a procedure to call it.
➣ Adding an exception handler to

your main form.
➣ Displaying ‘normal’ and EError

exceptions in that exception
handler.

This only needs to be done once:
Delphi 2.0’s Object Repository al-
lows us to save the code and re-use
it in all subsequent applications.

Creating the new exception
requires little work (see Listing 2).
The EError class reports the high-
est level error message in
EError.Message and subsequent,
lower level, error messages in the
Messages StringList. However, we
will rarely want to create an in-
stance of EError directly. For this
we use the procedure (not a
method of an object) shown in
Listing 3.

This code instantiates an EError
exception, NewE. If the exception

procedure NewError(E : Exception; Const NewMessage : String);
Var NewE : EError;
Begin
 NewE := EError.Create(NewMessage);
 If Assigned(E) Then Begin
 NewE.Messages := TStringList.Create;
 If (E Is EError) And (EError(E).Messages <> Nil) Then
 NewE.Messages.Assign(EError(E).Messages);
 NewE.Messages.Add(E.Message);
 End;
 Raise NewE;
End;

➤ Listing 3

Type
 EError = Class(Exception)
 Messages : TStringList;
 Destructor Destroy; Override;
 Procedure Add(Const S : String);
 End;

Destructor EError.Destroy;
Begin
 Messages.Free;
 Inherited;
End;

Procedure EError.Add(Const S : String);
Begin
 If Not Assigned(Messages) Then
 Messages := TStringList.Create;
 Messages.Add(S);
End;

➤ Listing 2

20 The Delphi Magazine Issue 13

we’re handling is already an EError,
then the existing error messages
are copied over. Finally, the new
exception is raised.

Adding the exception handler to
the main form is standard. In the
MainForm’s FormCreate we add the
line:

Application.OnException :=
 ExceptionHandler;

and then write the exception
handler itself:

Procedure TForm1.ExceptionHandler(

 Sender : TObject; E: Exception);

Begin

 ShowError(E);

End;

Now, any exception in our applica-
tion (which isn’t handled deeper in
our code) will come to this proce-
dure. ShowError is just a wrapper
around an error form (Listing 4).

The ShowError procedure looks
to see what type of exception it is
handling. If it is an Abort, it does
nothing. If it is an EError, it displays
the TErrorForm which has Previous
and Next buttons to allow the user
to drill down on the error, and if it
is a simple exception, it displays
the error in a MessageDlg.

We can change the error handler
shown in Listing 1 to that shown
below:

Procedure OpenCustomerTable;
Begin
 Try
 CustomerTable.Active :=
 True;
 Except
 On E : Exception Do
 NewError(E,
 ’Error opening ’+
 ’customer table’);
 End;
End;

Note that we never free an
exception ourselves. The excep-
tion passed in to NewError is
disposed of by Delphi when we no
longer need it, and the MainForm’s
exception handler will dispose of
the EError.

Unit FErrorForm;
Interface
Uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls, StdCtrls, Buttons, Errors;
Type
 TErrorForm = class(TForm)
 ErrorLabel: TLabel;
 Bevel1: TBevel;
 PreviousButton: TButton;
 NextButton: TButton;
 CloseButton: TButton;
 procedure FormActivate(Sender: TObject);
 procedure PreviousButtonClick(Sender: TObject);
 procedure NextButtonClick(Sender: TObject);
 Private
 ErrPos : Integer;
 FError : EError;
 Procedure Buttons;
 Procedure Messages;
 Procedure Position;
 Public
 Property Error : EError Write FError;
 End;
Var
 ErrorForm: TErrorForm;
Procedure ShowError(E : Exception);

Implementation
{$R *.DFM}

procedure TErrorForm.FormActivate(Sender: TObject);
begin
 If Assigned(FError.Messages) Then
 ErrPos := FError.Messages.Count
 Else
 ErrPos := 0;
 Position;
 Buttons;
 Messages;
 Screen.Cursor := crDefault;
end;

Procedure TErrorForm.Buttons;
Begin
 PreviousButton.Enabled := ErrPos <> 0;
 NextButton.Enabled := Assigned(FError.Messages) And
 (ErrPos < FError.Messages.Count);
 ActiveControl := CloseButton;
End;

Procedure TErrorForm.Messages;
Begin
 If Not Assigned(FError.Messages) Or (ErrPos = FError.Messages.Count) Then
 ErrorLabel.Caption := FError.Message
 Else
 ErrorLabel.Caption := FError.Messages[ErrPos];
End;

Procedure TErrorForm.Position;
Begin
 Left := (Screen.Width - Width) Div 2;
 Top := (Screen.Height - Height) Div 2;
End;

procedure TErrorForm.PreviousButtonClick(Sender: TObject);
begin
 Dec(ErrPos);
 Buttons;
 Messages;
end;

procedure TErrorForm.NextButtonClick(Sender: TObject);
begin
 Inc(ErrPos);
 Buttons;
 Messages;
end;

Procedure ShowError(E : Exception);
Begin
 If Not (E Is EAbort) Then Begin
 If E Is EError Then Begin
 ErrorForm.Error := EError(E);
 ErrorForm.ShowModal;
 End Else
 MessageDlg(E.Message, mtError, [mbOk], 0);
 End;
End;

end.

➤ Left: Listing 4

September 1996 The Delphi Magazine 21

Procedure OpenAllTables;
Begin
 Try
 OpenCustomerTable;
 OpenProductTable;
 OpenMasterTable;
 Except
 {$IFNDEF Production}
 On E : Exception Do
 NewError(E,
 ’OpenAllTables’);
 {$ELSE}
 Raise;
 {$ENDIF}
 End;
End;

➤ Listing 6

Function FindCustomerName(Const Key : String) : String;
Begin
 Result := ’’;
 Try
 Assert(Key <> ’’, ’Customer key is blank’);
 With CustomerTable Do Begin
 First;
 While Not EOF Do Begin
 If FieldByName(’CustomerKey’).AsString = Key Then Begin
 Result := FieldByName(’CustomerName’).AsString;
 Exit;
 End;
 Next;
 End;
 AssertFail(’Failed to find customer from key ’ + S);
 Except
 On E : Exception Do
 NewError(E, ’FindCustomerName error’);
 End;
End;

Benefits
The cascading error handler is a
boon to developers. In our debug
code, every call to the BDE and a
great many other procedures is
encapsulated in a Try..Except
block. Most routines have Asserts
both on input, to check that
parameters passed in are valid,
and on output, to show that the
routine succeeded – see Listing 5.

The result is that errors are
reported where they happen (and
the Asserts act as documentation
of valid input and output in a way
that comments usually fail to do).

This code is left in the debug
version permanently (we ship the
debug and production versions).

Presenting too much informa-
tion is nearly as bad as too little.
The debug version should report
more layers of error information
than the production code. Listing 6
shows how to separate exception
handling for both versions.

Enhancing Error Reporting
The error handler shown just adds
the capability of reporting more
than one error, but with object ori-
ented exceptions, there is no limit
on what can be reported. You
could, for example, provide a bit-
map at each level, so that database
errors are reported with a picture
of a table. One database validation
routine we use encapsulates a hier-
archy of errors into the extended
EError class and presents them to
the user in a TreeView.

Andrew McLellan is the principal
developer for teraformation ltd,
providing multi-dimensional ana-
lysis tools for OLAP databases. All
development is in Delphi 2.

➤ Listing 5

	The Cascading Exception System
	Three Layers Or More
	One Exception Handler
	Exceptions are Objects
	EError
	Benefits
	Enhancing Error Reporting

